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Abstract: Cruise ships and other naval vessels include automated Internet of Things (IoT)-based
evacuation systems for the passengers and crew to assist them in case of emergencies and accidents.
The technical challenges of assisting passengers and crew to safety during emergencies include
various aspects such as sensor failures, imperfections in the sound or display systems that are used
to direct evacuees, the timely selection of optimum evacuation routes for the evacuees, as well as
computation and communication delays that may occur in the IoT infrastructure due to intense
activities during an emergency. In addition, during an emergency, the evacuees may be confused
or in a panic, and may make mistakes in following the directions offered by the evacuation system.
Therefore, the purpose of this work is to analyze the effect of two important aspects that can have
an adverse effect on the passengers’ evacuation time, namely (a) the computer processing and
communication delays, and (b) the errors that may be made by the evacuees in following instructions.
The approach we take uses simulation with a representative existing cruise ship model, which
dynamically computes the best exit paths for each passenger, with a deadline-driven Adaptive
Navigation Strategy (ANS). Our simulation results reveal that delays in the evacuees’ reception of
instructions can significantly increase the total time needed for passenger evacuation. In contrast,
we observe that passenger behavior errors also affect the evacuation duration, but with less effect
on the total time needed to evacuate passengers. These findings demonstrate the importance of the
design of passenger evacuation systems in a way that takes into account all realistic features of the
ship’s indoor evacuation environment, including the importance of having high-performance data
processing and communication systems that will not result in congestion and communication delays.

Keywords: passenger evacuation; naval vessels; cruise ships; emergency systems; information
technology support; processing delays; congestion in communication systems

1. Introduction

In case of emergencies, evacuation methods are critical to managing people and
vehicles in a manner that guarantees their safety [1,2]. These methods rely on the sensing,
communication, and signaling technologies that are required to (a) know where people and
vehicles are located and (b) how one can communicate with them or inform them about
ongoing conditions so as to (c) direct them along effective pathways towards safety.

Research in this area includes the use of sensing and communication technologies [3],
crowd monitoring [4], hazard modeling and prediction [5], evacuation simulation and
evacuation path planning [6]. In particular, offline simulation of evacuation schemes
aids the design and comparison of the sensing and communication technologies, and of
the algorithms [7] that improve or optimize the performance and robustness of evacua-
tion strategies.

Thus, emergency management simulation research addresses simulations that repre-
sent the movement of people who congregate in sports arenas, touristic sites, and other
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leisure venues [8,9], as well as in large ships [10], in the presence of unusual and extreme
conditions such as the breakdown of some facilities or adversarial situations such as fire
or panic.

With the increased popularity of the cruise ship industry worldwide, more attention
has been paid to passenger safety in maritime transportation [11]. Although advanced
accident prevention systems are deployed in modern passenger ships, maritime trans-
port accidents unfortunately occur, such as the Sewol Ferry accident in South Korea that
caused 304 casualties on 16 April 2014 [12], the Chinese Eastern Star accident that caused
42 casualties on 1 June 2015 [13], and the collision of two passenger ships in the Padma
River in Bangladesh, resulting in 26 deaths on 3 May 2021 [14]. Therefore, effective evacua-
tion methods for passengers on cruise or passenger ships are of great importance [15], and
significant research is recently being conducted in this area [16].

Since such accidents or emergencies cannot be artificially created or reproduced or
easily observed for data analysis when they occur, the simulation of human evacuation on
ships has become a key tool in the design of both civilian and military naval vessels [17–19].

In particular, the IMO (International Maritime Organization) has published circulars
regarding the simulation of naval vessel evacuation both for passenger and roll-on-roll-off
ships. In 2016, it also issued approvals for guidelines regarding the simulation of evacuation
both for new and existing passenger ships [20]. However, the actual technology that is used
in supporting passenger evacuation, such as the computers, communication systems, visible
panels, loudspeaker announcements, and other sensors and actuators, can themselves have
some imperfections that are exacerbated during an emergency. Furthermore, passengers
can also be panicked and confused during such events. Thus, this paper focuses on the
effect—on the time taken by passengers to exit the ship —of:

1. Computation and communication delays in the sensing, communication and computer
processing technologies in the vessel, including the processing delays in the computers
that provide instructions to the evacuees [21,22];

2. Errors that the passengers may make in following instructions. Such errors can be
caused by panic, human error or the lack of visibility of direction panels, and the
difficulty of understanding loudspeaker announcements due to noise.

Our study uses a simulation framework to evaluate the outcome of these factors on
the time needed by passengers to reach a safe exit, based on multiple simulation runs
using the AnyLogic simulator [23] described in Section 2. The present research does not
consider some other features that can impact the speed and safety of human beings during
emergencies [7,24], including the time needed to traverse passages and staircases as a
function of the health and age of different passengers. However, our simulations include
the effect of the changes in the tilt of the ship which will affect the traversal times.

While AnyLogic is used as part of our simulation tool, we do not claim or suggest that
this tool should be used for real-time decision making during an emergency. We expect
that the software used to manage evacuations during the emergency would include a fast
discrete-event purpose-built simulator which updates—in real-time—the dynamic spread
of hazards that are reported via sensors installed in the cruise ship, or in any other built
structures such as buildings, campuses or cities, which require emergency evacuation.

The remaining sections of this paper are structured as follows: The related research
about evacuation in passenger ships and built structures is reviewed in Section 1. A detailed
description of the ship emergency evacuation simulator is provided in Section 2, while
the simulation results regarding the impact of delay and lost messages, which result from
communication system congestion, are given in Section 3. Then, Section 4 presents the
possible impact of uncertainties in human behavior. In Section 5, we discuss potential
extensions and open aspects of our work and present our conclusions.

Related Work

There has been extensive work on using the IoT to support emergency management [25],
and advanced systems such as Unmanned Aerial Vehicles (UAVs) have also been suggested
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as a means for observation and sensing [26] during emergencies. While the current study
does not assume that evacuees were identified and tracked during the evacuation, there has
been work on the issue of localization of specific groups, such as elderly people who may
have greater difficulty in reaching exits safely [27].

While the use of path optimization algorithms in emergency evacuation is quite
common [28] to minimize evacuation delay or minimize the risk to evacuees using prior
2D/3D knowledge [29,30], the decisions regarding the choice of paths do not always
include the effects of unexpected or new hazards that may be encountered. The Expected
Number of Oscillations (ENO) [31] has been used to quantify the dynamic changes due
to spreading hazards, so that a small ENO indicates the paths do not change often under
the effect of possible dangers and are therefore to be preferred. Indeed, methods that
try to predict the optimum paths may not result in the safest paths, and the information
available prior to an emergency may not match the realistic developments that may occur
as an emergency unfolds. Therefore, recent studies do not require that all possible hazards
be known for optimization purposes and tend to lead to results that have more value in
practice [7,32].

Methods such as Social Potential Fields (SPF) [33] and local neighborhood
techniques [34,35] with possible partial reversal can also help evacuees avoid entering
hazardous areas. However, most studies do not consider the need to provide directions that
assure that the “time needed to reach the exit” for each evacuee remains under a required
specified bound determined by the characteristics of the worst-case dynamic characteristics
of the ship.

Thus, this paper uses the Adaptive Navigation Strategy (ANS) evacuation algorithm,
an extension of Rapid Routing with Guaranteed Delay Bounds [36], which was previously
named ANT in [37], creating potential confusion with other well-known “ant colony” opti-
mization techniques. ANS incorporates a guaranteed exit deadline bound, for each evacuee
in each location. When dealing with ships, this deadline bound can be obtained, as already
indicated above, from the recommendations of the IMO. We note that various organizations
in various countries and regions have made corresponding safety recommendations for
office buildings, apartment buildings, factories, university campuses, etc. Note that all the
work cited in this paper is summarized in Table 1.

Table 1. Summary of the related work in this paper.

Evacuation
Review

Focus Related work

Crowd monitoring [4,6,25]
Disaster detection &

prediction [3,6,25]

Evacuation modelling [6,11,15,19]
Evacuation path planning [6,11,15,28,30]

Ship
Accident

Accident type Related work

Ship sinking [12,13]
Ship collision [14]

Evacuation
Simulation

Simulation model Related work

Agent-based model [1,8,9,17,20,32]
Social force model [10,21,23,24]

Social potential field model [33]
Flow model [17,20]
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Table 1. Cont.

Path
Planning

Planning method Related work

A* [5]
Swarm optimization

algorithm [26]

Proactiv & reactive method [29]
Cognitive packet

network-based method [7,38,39]

OPEN [31]
Social potential field [7]

Temporally ordered routing
algorithm [34]

Directional pathfinding
method [35]

Table-driven method [36]
ANS [37]

Dinic algorithm [40]
Minimum spanning tree [41]

Hazard potential field [42]

Risk
Analysis

Analysis method Related work

Bayesian network [16]
Failure modes and effects

analysis &
analytic hierarchy process &
fuzzy rule-based Bayesian

reasoning &
ER

[22]

Person
Localization

Method Related work

Hybrid optimized fuzzy
threshold

extreme learning machine
[27]

Decision Rule
Learning

Method Related work

Coevolutionary fuzzy rule
miner [2]

Evacuation Analysis
& Layout Optimization

Method Related work

FDS+EVAC [18]

Wireless Energy
Transmission

Method Related work

Four-stage transmission [43]

Activity & Data
Detection

Method Related work

Multi-armed bandit [44]

2. The Simulation Framework

We now describe the simulation framework that we use to evaluate the effects of both
the computer and communication technology delay in providing routing instructions to
evacuees, and the uncertainties related to the evacuees’ behavior, within an event-driven
simulation framework. This framework contains two parts:

• The first part is the simulation software AnyLogic 8.8-8.8.2: Please state the version
number of the software. I have added the version number. in which the layout of
the physical where the evacuation occurs is incorporated. The “pedestrian” software
library of AnyLogic adopts the Social Potential Field model to determine the direction
of the movement of each evacuee.

• Secondly, we add a path-planning module written in Python that computes the evacu-
ation direction for evacuees based on ANS, which is described below. This module
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transfers the computed instructions to the AnyLogic simulation software at each
simulation step when the movement instructions need to be updated.

• ANS is implemented in our simulator to move evacuees along the path with mini-
mum delay, avoiding the harmful effects caused by dynamic hazards. ANS assumes
knowledge about the propagation of hazards (velocity and direction), and the average
and maximum delay across each edge in the paths.

• As hazards progress in the simulation, ANS calculates the direction each evacuee
should take to avoid hazards. In a real evacuation, this direction should be computed
and then communicated to each evacuee via a wired or wireless network. In previous
work, the possible delays of this communication were not taken into account.

• However, wireless or wired networks and computational servers that are used for
decision making are likely to experience congestion, especially in emergency situations
when decisions and communications are frequently updated and many messages are
sent to evacuees and to the staff in the ship. This congestion can cause delays in
updates regarding the navigation direction, and transmitting network packets and
hence messages can be lost, and decisions may lead to errors due to the arrival of
delayed instructions or facts, used by decision algorithms, that have been modified
by events [43,44]. While most prior work neglects these effects, the present paper
specifically evaluates their effect on the time required for the evacuation.

• Also, the passengers being evacuated may themselves be unable to follow the instruc-
tions they receive due to noise, panic, or misunderstanding.

• Thus, these delays and possible errors due to Information and Communication Tech-
nology (ICT), including network packet losses, as well as the possible effects of panic
or misunderstandings by the evacuees, will be simulated and evaluated in this paper.

2.1. The Supporting IoT System

The IoT could, in principle, use the personal identification of each passenger via
“smart badges”, “RFID” (radio-frequency identity), or communicating “wristwatches”.
However, such devices requiring radio-frequency communications can be unreliable within
naval vessels. Indeed, large ships typically have high steel content with possible local
Faraday cage effects, as well as the refraction and reflection of high-frequency radio waves.
In addition, the numerous electric motors (e.g., for ventilation and lifts) and ongoing
automatic switching of equipment (e.g., on–off of air-conditioning equipment, multiple
refrigerators, fans), as well as multi-path reflections, can lead to substantial radio-frequency
interference. Other means of sophisticated local communication, such as high-frequency
ultrasound or modulated light signals, may potentially be used, but in this paper, we
assume that individual identification of the location of each passenger is not available.

The ship that we are simulating will have an ICT infrastructure that includes a high-
speed local area network (LAN) equipped with switches and routers that conveys packet-
based data communications between all the sensors and actuators together with WiFi
hubs as needed. The LAN is connected to a Data Center (DC), that is used to compute
the emergency instructions for the evacuees, as well as for storing and processing other
information related to the passenger ship. The LAN topology, as well as the DC itself,
will be designed in advance for appropriate redundancy and reliability to adequately face
emergency situations.

Infrared sensors connected to the ICT infrastructure may be placed throughout the
vessel (in cabins, corridors, etc.) to detect human presence without identifying the indi-
vidual. Of course, such sensors can also detect hazards such as high temperatures caused
by fire, and electrical short circuits. There will also be a variety of temperature and smoke
sensors. Passage locations and common areas (e.g., restaurants, decks, bars, and lounges)
are typically equipped with video cameras to estimate the number of people present, and
also for the purpose of security.

In addition, throughout the ship and connected to the ICT infrastructure via the LAN,
there will be various Emergency Direction Providers (EDPs). These will activate in an
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emergency and will have red/white signs throughout the locations of the ship, which flash
and provide directions to the passengers, with instructions such as “Exit Here”, “Turn
Right”, “Turn Left”, “Go Straight”, “Wait Here”, etc., to provide directions to help evacuate
the passengers. These instructions will be computed by the DC and sent over the LAN to
the EDPs.

In case of an emergency, the DC runs the ANS evacuation algorithm to determine
for the passengers, the Evacuation Movement Recommendations (EMRs). Thus, the
simulations in the present paper evaluate the effectiveness of the EMRs in the presence of
the following:

• Delays in the reception of the EMRs at the locations of the EDPs throughout the
vessel. These delays can be caused by LAN delays and congestion, and DC delay and
congestion during an emergency.

• Errors made by evacuees in following instructions from the EDPs during an emergency
evacuation due to confusion and panic.

2.2. System Parameters for the Simulation

The indoor environment we simulate is the second, third, and fourth floors of the
Yangtze Gold 7 Cruise Ship, as shown in Figures 1 and 2, with 346 nodes from which
evacuees originate or pass through, including connection points between corridors or
rooms through which evacuees may pass, and a single exit node for the evacuation. There
are also 600 passageway segments and 5 staircase segments at the edges of the graph that
connect these nodes.

(a)

(b)

(c)

Figure 1. Schematic description of the layout for the Yangtze Gold 7 Cruise ship over three passenger
floors (second, third, and fourth). This layout is used for simulating all the effects studied in this
paper, including the delays in communicating the guidance information to the evacuees, and the
possible uncertainty in the behavior of the evacuees. Here, (a–c) show the layout of the physical space
of the second, third, and fourth floors.
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Figure 2. The evacuation graph representation of the physical space, showing the nodes where
routing decisions are communicated to the evacuees via the EMRs.

The simulation uses the worst-case evacuee movement speed to estimate the time
required for evacuees to cross each segment, which is 0.067 m/s. The average traversal time
for each segment is estimated from the passengers’ average speed of movement calculated
based on the average speed at which an evacuee walks when the ship is horizontal is taken
to be 0.67 m/s. In addition, the total time available to a passenger to evacuate the ship
when they receive the “evacuate” message can be estimated as follows:

TD = TS − TA − TEL, (1)

where TS is the ship’s survival duration (e.g., until it capsizes), TA is the delay between
the start of the emergency until the “evacuate” message is received by the evacuees, and
TEL is the time needed to embark on a lifeboat and for the lifeboat. The MSC (Maritime
Safety Committee) [20] has estimated that TS = 60 min, TA = 5 min, TEL = 25 min; thus,
TD = 30 min.

2.3. Layout of the Simulation Framework

The simulation layout for the Yangtze Gold 7 cruise ship’s three passenger floors
in Figure 2, shows the “dots” (i.e., nodes) which are locations where passengers may
be staying or meeting (e.g., cabins, lobby, and restaurant), while the edges show the
passageways, stairs, or corridors. The simulation also allows the inclusion of the effect
of the inclination angle when the ship is damaged, which can change at regular intervals.
This can affect the average traversal time encountered across each individual corridor or
staircase which changes (shorter or longer time) with the inclination.
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Each simulation is initialized by locating the evacuees (passengers) at random over
the nodes, and each simulation is repeated over 100 rounds where the initial locations each
time are randomized in the same way.

3. Impact of Delays in Computing and Communications on Passenger Evacuation

The ANS provides each evacuee, at each of the nodes of all the evacuation paths in
the ship, an estimate of the next-step hazard-free node that the evacuee should enter to
head toward the exit, based on the estimated total minimum delay to the exit from its
current location. Since conditions may rapidly change with time during an evacuation, the
computer and communication system that computes these directions and forwards the
decisions to the nodes on each path may be congested during an evacuation. Thus, the
resulting messages to evacuees may be delayed or lost.

Therefore, in this section, we analyze the impact of these possible delays, which
are caused by performance imperfections and congestion of the underlying Information
Technology System (ITS). To this effect, we define the “information lag” (IL) which refers
to any generic node in the ship evacuation topology. IL = 0 means that each node in
the evacuation topology of nodes and paths has received, from the ITS system, the exact
direction recommendation which is based on the current true location of the evacuees at
each node.

On the other hand, IL = 1 means that each node provides information to the evacuees
regarding the next move they should make based on the location of the evacuees just
prior to the current arrival of evacuees to their current node. Thus, IL = 1 means that the
computation and transmission of the information are delayed by one step.

We also define the “probability of delay” (PoD), which indicates whether the infor-
mation lag is IL = 1 with probability PoD or IL = 1 with probability 1 − PoD. PoD is a
value that is probabilistically attributed to each node, since the delay may differ from node
to node due to the communication system delays.

In the rest of this section, we evaluate the effect of PoD on the evacuation system’s
performance. All simulation results that are shown are obtained by drawing the probability
PoD separately for each of the nodes and for 100 independent simulations under the
same initial conditions. The figures that are shown for each simulation also show the 95%
confidence intervals.

Evaluation of the Average Evacuation Time

The first evaluation is conducted to determine the average evacuation time in seconds,
from all of the 346 nodes, relative to the ideal case with IL = 0.

Figure 3a plots the average evacuation time from all 346 starting nodes until the exit
as a function of PoD. Figure 3b shows the performance ratio of average evacuation time
for different values of PoD to the average for the ideal case of PoD = 0. Averages are
taken over all nodes and based on 100 distinct independent simulations. We also show
the standard deviation (black bars) for the evacuation time from all 346 nodes. These
curves show clearly that as PoD increases to 0.5, the increase in average evacuation delay is
quasi-linear, but for higher values, the increase continues but more slowly. When PoD = 1
for all nodes, the average evacuation time over all nodes is 50% higher than PoD = 0
(where the ITS provides up-to-date information to all nodes).

In addition, we also implement a group of simulations to evaluate the average evac-
uation time, in seconds, for passengers located in cabins. Figure 4a shows the effect of
the probabilities PoD on the evacuation time of passengers that start from cabins. The
performance ratio of the average evacuation time from cabins relative to the case PoD = 0
is given in Figure 4b, showing that it increases with PoD.

We also evaluate the average evacuation time for passengers that are initially located
in the restaurant. Figure 5a presents the results for passengers who started the evacuation
from the restaurant. It appears that the information processing delay has a smaller influence
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in this case, as compared to the evacuation time of passengers from the cabins when the
delay probability PoD is low, such as PoD = 0.1 and PoD = 0.2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
PoD

0

100

200

300

400

500

600

Av
er

ag
e 

ev
ac

ua
tio

n 
tim

e

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
PoD

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pe
rfo

rm
an

ce
 ra

tio

(b)

Figure 3. The average evacuation time in seconds from all 346 nodes to the exit (a) as a function
of PoD (x-axis), and (b) the performance ratio of the average evacuation times as compared to the
ideal case of PoD = 0. Averages are over all nodes for 100 distinct independent simulations, with the
standard deviation (the black bars) for the evacuation time.
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Figure 4. The average evacuation time from the cabins to the exit given in seconds (a) as a function
of PoD (x-axis), and (b) the performance ratio of the average evacuation time as compared to the
ideal case of PoD = 0. Averages are taken over all passengers starting from cabins for 100 dis-
tinct independent simulations. The standard deviation (the black bars) of the evacuation time is
also shown.
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Figure 5. The average evacuation time in seconds for passengers that are initially located in the
restaurant (a) as a function of PoD (x-axis), and (b) the resulting performance ratio as compared to
the ideal case of PoD = 0. Averages are taken over all passengers who were initially in the restaurant
for 100 distinct independent simulations. The standard deviation of their evacuation time is shown
with the black bars.

Finally, we perform a group of simulations in which half of the passengers are initially
placed at random in cabins while the other half start from the restaurant, and we vary
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the total number of passengers. Note we assume that there are at most two passengers
per cabin.

As shown in Figure 6a, the evacuation time grows with the number of passengers.
This is mainly attributed to the increased waiting time resulting from the more serious
congestion due to a large scale of passengers being evacuated. The evacuation time also
increases with PoD, regardless of the number of passengers.
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Figure 6. The average evacuation time in seconds, with a 95% confidence interval, taken by different
numbers of passengers where half of them originate in the cabins while the other half start from the
restaurant (a), and (b) the performance ratio of the average evacuation time as compared to the ideal
case with PoD = 0.

Figure 6b shows the change in the ratio of average evacuation time as a function of the
number of passengers and of PoD. The performance ratio is always larger than 1, which
indicates that as PoD grows, then the evacuation also duration grows, and the growth rate
is higher for larger PoD.

4. The Effect of Uncertain Passenger Behaviour

During emergencies, the evacuees may panic or find it hard to read or hear instructions
for evacuation. We model this by the choice of evacuees to miss the correct direction and
take another one at random.

Therefore, in this section, we investigate the impact of the non-compliance with the
evacuation suggestion. To this effect, we define the ‘‘probability of error” denoted as PoE,
which indicates whether a passenger does not obey the provided evacuation direction with
probability PoE or moves along the provided direction with probability 1 − PoE. PoE is a
value that is a probability that is chosen itself at random and attributed to each passenger,
since the behavior may differ from passenger to passenger.

The Average Evacuation Time

First, we conduct simulations to measure the evacuation time, from all of the 346 nodes
to the exit under various values of PoE. Figure 7 presents the ratio of average evacuation
times relative to the case PoE = 0, where passengers fully comply with the ITS recom-
mendation. Clearly, all the values of the performance ratio exceed 1, which shows that
the behavior uncertainty of passengers prolongs the average evacuation time in seconds.
We can observe that with the increase in the probability with which passengers ignore the
evacuation guidance, the performance ratio in average evacuation time in seconds also
increases. However, compared to PoD, the uncertain behavior of passengers has a less
pronounced effect on the average evacuation time in seconds.

We also carry out a set of simulations to evaluate the impact of behavior uncertainty on
the evacuation time of passengers who are initially located at random at nodes representing
passenger cabins. Figure 8 plots the average evacuation time and the performance ratio
compared to the case PoE = 0. The standard deviation is also shown. It can be observed
that the average evacuation time increases with the probability of behavior uncertainty.
When PoE = 0.5, the average evacuation time increases by almost 40% relative to PoE = 0.
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Furthermore, it is worth noticing that the passengers in cabins are more significantly
affected by their uncertain behavior compared to the results in Figure 7.
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Figure 7. The performance ratio in average evacuation time in seconds from the 346 nodes to the exit
compared to the ideal case PoE = 0.
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(a) Growth of the average evacuation time in sec-
onds for passengers leaving from the cabins, as a
function of PoE.
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(b) Performance ratio of the average evacuation time
as compared to the ideal case PoE = 0, shown as a
function of PoE.

Figure 8. The average evacuation time in seconds taken by passengers in cabins and the performance
ratio of the average evacuation time compared to the ideal case PoE = 0.

The average evacuation time in seconds for passengers in the restaurant is also mea-
sured as shown in Figure 9. We can see that failing to exit according to the instructions
impairs the evacuation scheme and lengthens the evacuation of passengers from the restau-
rant. Again, it appears that this uncertain behavior has a milder effect on the average
evacuation time for passengers in the restaurant compared to passengers leaving from
the cabins.
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(a) The average evacuation time in seconds for pas-
sengers in the restaurant as a function of PoE.
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(b) The ratio of the average evacuation time for in-
creasing values of PoE, compared to the ideal case
PoE = 0 for passengers exiting from the restaurant.

Figure 9. The average evacuation time in seconds for passengers in the restaurant and the performance
ratio in average evacuation time compared to the ideal case PoE = 0.

We also measure the average evacuation time for different numbers of passengers
with different probabilities of not following the evacuation directions. Here, half of the
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passengers start from the restaurant while the other half start from their cabins. Figure 10
plots the average evacuation time with the 95% confidence interval for different numbers of
passengers with different probabilities of uncertain behavior. We can see that the average
evacuation time increases with the probability of uncertain behavior. Nevertheless, we
observe that behavior uncertainty has a much smaller effect on the average evacuation
time, particularly if the passenger does not exceed 300. Again, behavior uncertainty
has a much lower impact than PoD, showing that the ANS method is more resilient to
uncertainties in evacuee behavior than to delays in the information technology system used
for directing evacuees.
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(a) We evaluate the effect of the evacuees’ errors or
panic, represented by the probability PoE of not fol-
lowing an evacuation instruction, and observe the
increase in the average evacuation time in seconds,
with a 95% confidence interval, as a function of the
total number of passengers, assuming that half of the
passengers originate in the cabins, while the other half
start from the restaurant, for different values of PoE.
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(b) We observe the relative increase of the evacuation
time with respect to the case ideal case where PoE = 0,
as a function of the total number of evacuees, due the
evacuees’ errors or panic, for different values of PoE
of not following an evacuation instruction. Here, half
of the passengers originate in the cabins, while the
other half start from the restaurant.

Figure 10. This figure evaluates the impact of the effect of errors or panic by the evacuees, as
represented by the probability PoE. On the left, we show the increase in the average evacuation time
in seconds, with a 95% confidence interval, as a function of the total number of passengers, assuming
that half of the passengers originate in the cabins, while the other half start from the restaurant, for
different values of PoE. Under the same conditions on the number of passengers starting from the
cabins and the restaurant, the right-hand side figure shows the increase in the relative performance
ratio in average evacuation time as compared to the ideal case with PoE = 0 for different values of
PoE and as a function of the total number of evacuees (passengers).

5. Conclusions and Future Work

Large transportation systems such as trains, passenger ships and aircraft require
reliable and effective emergency evacuation to ensure the safety and passengers. Thus,
much research has addressed the design of technology-assisted means to direct passengers
effectively during emergencies, with algorithms and methods that maximize fast and
optimized means for evacuation [39]. Thus, the present work addresses some of the key side
effects of technology-assisted emergency evacuation that includes extensive simulations of
a realistic and existing ship scenario.

Assuming that ongoing situational information is gathered by sensor networks [40–42]
and then processed to provide optimum decisions and communicated to the evacuees as
they progress towards the designated exits, our work has included the effects of imper-
fections in the technology support such as communication and processing delays for
instructions to arrive at the evacuees, as well as the effects of mistakes that evacuees
themselves may make during an evacuation.

We see that delayed decisions which are forwarded to all end evacuees as they pass
through pre-determined “nodes” that guide them towards safety will create substantial
evacuation delays for the evacuees. Similarly, we have observed that mistakes that are
made by passengers due to panic or misunderstanding of the instructions also will increase
the evacuation delays, but to a lesser extent as compared to delays due to the technology.
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Thus, further research is needed to support evacuee safety in such complex and
dynamic environments with many rapidly changing effects that may overwhelm both
the ICT-based emergency management system [38] and the ability of evacuees to follow
instructions. We suggest that future research could include these delaying factors in
advance and design novel decentralized emergency navigation systems that pre-locate
advisory data and related computational means in key system intermediate locations,
combining centralized decisions with local decision making individual evacuee decision
aids and hand-held mobile devices [35].
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